Removed unused bcrypt password hashing methods (#852)

Co-authored-by: Jeroen van Erp <jeroen@hierynomus.com>
This commit is contained in:
exceptionfactory
2023-07-14 08:39:18 -05:00
committed by GitHub
parent 39a7be9221
commit 07837098eb
2 changed files with 14 additions and 529 deletions

View File

@@ -14,11 +14,9 @@
package com.hierynomus.sshj.userauth.keyprovider.bcrypt;
import java.io.UnsupportedEncodingException;
import java.security.DigestException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
/**
* BCrypt implements OpenBSD-style Blowfish password hashing using
@@ -30,32 +28,6 @@ import java.security.SecureRandom;
* based on Bruce Schneier's Blowfish cipher. The work factor of
* the algorithm is parameterised, so it can be increased as
* computers get faster.
* <p>
* Usage is really simple. To hash a password for the first time,
* call the hashpw method with a random salt, like this:
* <p>
* <code>
* String pw_hash = BCrypt.hashpw(plain_password, BCrypt.gensalt()); <br>
* </code>
* <p>
* To check whether a plaintext password matches one that has been
* hashed previously, use the checkpw method:
* <p>
* <code>
* if (BCrypt.checkpw(candidate_password, stored_hash))<br>
* &nbsp;&nbsp;&nbsp;&nbsp;System.out.println("It matches");<br>
* else<br>
* &nbsp;&nbsp;&nbsp;&nbsp;System.out.println("It does not match");<br>
* </code>
* <p>
* The gensalt() method takes an optional parameter (log_rounds)
* that determines the computational complexity of the hashing:
* <p>
* <code>
* String strong_salt = BCrypt.gensalt(10)<br>
* String stronger_salt = BCrypt.gensalt(12)<br>
* </code>
* <p>
* The amount of work increases exponentially (2**log_rounds), so
* each increment is twice as much work. The default log_rounds is
* 10, and the valid range is 4 to 30.
@@ -64,22 +36,18 @@ import java.security.SecureRandom;
* @version 0.2
*/
public class BCrypt {
// BCrypt parameters
private static final int GENSALT_DEFAULT_LOG2_ROUNDS = 10;
private static final int BCRYPT_SALT_LEN = 16;
// Blowfish parameters
private static final int BLOWFISH_NUM_ROUNDS = 16;
// Initial contents of key schedule
private static final int P_orig[] = {
private static final int[] P_orig = {
0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344,
0xa4093822, 0x299f31d0, 0x082efa98, 0xec4e6c89,
0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917,
0x9216d5d9, 0x8979fb1b
};
private static final int S_orig[] = {
private static final int[] S_orig = {
0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7,
0xb8e1afed, 0x6a267e96, 0xba7c9045, 0xf12c7f99,
0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efc16,
@@ -344,149 +312,9 @@ public class BCrypt {
0x66697368, 0x53776174, 0x44796e61, 0x6d697465,
};
// bcrypt IV: "OrpheanBeholderScryDoubt". The C implementation calls
// this "ciphertext", but it is really plaintext or an IV. We keep
// the name to make code comparison easier.
static private final int bf_crypt_ciphertext[] = {
0x4f727068, 0x65616e42, 0x65686f6c,
0x64657253, 0x63727944, 0x6f756274
};
// Table for Base64 encoding
static private final char base64_code[] = {
'.', '/', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5',
'6', '7', '8', '9'
};
// Table for Base64 decoding
static private final byte index_64[] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, 0, 1, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, -1, -1,
-1, -1, -1, -1, -1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
-1, -1, -1, -1, -1, -1, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, -1, -1, -1, -1, -1
};
// Expanded Blowfish key
private int P[];
private int S[];
/**
* Encode a byte array using bcrypt's slightly-modified base64
* encoding scheme. Note that this is *not* compatible with
* the standard MIME-base64 encoding.
*
* @param d the byte array to encode
* @param len the number of bytes to encode
* @return base64-encoded string
* @exception IllegalArgumentException if the length is invalid
*/
private static String encode_base64(byte d[], int len)
throws IllegalArgumentException {
int off = 0;
StringBuffer rs = new StringBuffer();
int c1, c2;
if (len <= 0 || len > d.length)
throw new IllegalArgumentException ("Invalid len");
while (off < len) {
c1 = d[off++] & 0xff;
rs.append(base64_code[(c1 >> 2) & 0x3f]);
c1 = (c1 & 0x03) << 4;
if (off >= len) {
rs.append(base64_code[c1 & 0x3f]);
break;
}
c2 = d[off++] & 0xff;
c1 |= (c2 >> 4) & 0x0f;
rs.append(base64_code[c1 & 0x3f]);
c1 = (c2 & 0x0f) << 2;
if (off >= len) {
rs.append(base64_code[c1 & 0x3f]);
break;
}
c2 = d[off++] & 0xff;
c1 |= (c2 >> 6) & 0x03;
rs.append(base64_code[c1 & 0x3f]);
rs.append(base64_code[c2 & 0x3f]);
}
return rs.toString();
}
/**
* Look up the 3 bits base64-encoded by the specified character,
* range-checking againt conversion table
* @param x the base64-encoded value
* @return the decoded value of x
*/
private static byte char64(char x) {
if ((int)x < 0 || (int)x > index_64.length)
return -1;
return index_64[(int)x];
}
/**
* Decode a string encoded using bcrypt's base64 scheme to a
* byte array. Note that this is *not* compatible with
* the standard MIME-base64 encoding.
* @param s the string to decode
* @param maxolen the maximum number of bytes to decode
* @return an array containing the decoded bytes
* @throws IllegalArgumentException if maxolen is invalid
*/
private static byte[] decode_base64(String s, int maxolen)
throws IllegalArgumentException {
StringBuffer rs = new StringBuffer();
int off = 0, slen = s.length(), olen = 0;
byte ret[];
byte c1, c2, c3, c4, o;
if (maxolen <= 0)
throw new IllegalArgumentException ("Invalid maxolen");
while (off < slen - 1 && olen < maxolen) {
c1 = char64(s.charAt(off++));
c2 = char64(s.charAt(off++));
if (c1 == -1 || c2 == -1)
break;
o = (byte)(c1 << 2);
o |= (c2 & 0x30) >> 4;
rs.append((char)o);
if (++olen >= maxolen || off >= slen)
break;
c3 = char64(s.charAt(off++));
if (c3 == -1)
break;
o = (byte)((c2 & 0x0f) << 4);
o |= (c3 & 0x3c) >> 2;
rs.append((char)o);
if (++olen >= maxolen || off >= slen)
break;
c4 = char64(s.charAt(off++));
o = (byte)((c3 & 0x03) << 6);
o |= c4;
rs.append((char)o);
++olen;
}
ret = new byte[olen];
for (off = 0; off < olen; off++)
ret[off] = (byte)rs.charAt(off);
return ret;
}
private int[] P;
private int[] S;
/**
* Blowfish encipher a single 64-bit block encoded as
@@ -494,7 +322,7 @@ public class BCrypt {
* @param lr an array containing the two 32-bit half blocks
* @param off the position in the array of the blocks
*/
private final void encipher(int lr[], int off) {
private void encipher(int[] lr, int off) {
int i, n, l = lr[off], r = lr[off + 1];
l ^= P[0];
@@ -524,7 +352,7 @@ public class BCrypt {
* current offset into data
* @return the next word of material from data
*/
private static int streamtoword(byte data[], int offp[]) {
private static int streamtoword(byte[] data, int[] offp) {
int i;
int word = 0;
int off = offp[0];
@@ -542,18 +370,18 @@ public class BCrypt {
* Initialise the Blowfish key schedule
*/
private void init_key() {
P = (int[])P_orig.clone();
S = (int[])S_orig.clone();
P = P_orig.clone();
S = S_orig.clone();
}
/**
* Key the Blowfish cipher
* @param key an array containing the key
*/
private void key(byte key[]) {
private void key(byte[] key) {
int i;
int koffp[] = { 0 };
int lr[] = { 0, 0 };
int[] koffp = { 0 };
int[] lr = { 0, 0 };
int plen = P.length, slen = S.length;
for (i = 0; i < plen; i++)
@@ -579,10 +407,10 @@ public class BCrypt {
* @param data salt information
* @param key password information
*/
private void ekskey(byte data[], byte key[]) {
private void ekskey(byte[] data, byte[] key) {
int i;
int koffp[] = { 0 }, doffp[] = { 0 };
int lr[] = { 0, 0 };
int[] koffp = { 0 }, doffp = { 0 };
int[] lr = { 0, 0 };
int plen = P.length, slen = S.length;
for (i = 0; i < plen; i++)
@@ -687,183 +515,4 @@ public class BCrypt {
throw new RuntimeException(e);
}
}
/**
* Perform the central password hashing step in the
* bcrypt scheme
* @param password the password to hash
* @param salt the binary salt to hash with the password
* @param log_rounds the binary logarithm of the number
* of rounds of hashing to apply
* @param cdata the plaintext to encrypt
* @return an array containing the binary hashed password
*/
public byte[] crypt_raw(byte password[], byte salt[], int log_rounds,
int cdata[]) {
int rounds, i, j;
int clen = cdata.length;
byte ret[];
if (log_rounds < 4 || log_rounds > 30)
throw new IllegalArgumentException ("Bad number of rounds");
rounds = 1 << log_rounds;
if (salt.length != BCRYPT_SALT_LEN)
throw new IllegalArgumentException ("Bad salt length");
init_key();
ekskey(salt, password);
for (i = 0; i != rounds; i++) {
key(password);
key(salt);
}
for (i = 0; i < 64; i++) {
for (j = 0; j < (clen >> 1); j++)
encipher(cdata, j << 1);
}
ret = new byte[clen * 4];
for (i = 0, j = 0; i < clen; i++) {
ret[j++] = (byte)((cdata[i] >> 24) & 0xff);
ret[j++] = (byte)((cdata[i] >> 16) & 0xff);
ret[j++] = (byte)((cdata[i] >> 8) & 0xff);
ret[j++] = (byte)(cdata[i] & 0xff);
}
return ret;
}
/**
* Hash a password using the OpenBSD bcrypt scheme
* @param password the password to hash
* @param salt the salt to hash with (perhaps generated
* using BCrypt.gensalt)
* @return the hashed password
*/
public static String hashpw(String password, String salt) {
BCrypt B;
String real_salt;
byte passwordb[], saltb[], hashed[];
char minor = (char)0;
int rounds, off = 0;
StringBuffer rs = new StringBuffer();
if (salt.charAt(0) != '$' || salt.charAt(1) != '2')
throw new IllegalArgumentException ("Invalid salt version");
if (salt.charAt(2) == '$')
off = 3;
else {
minor = salt.charAt(2);
if (minor != 'a' || salt.charAt(3) != '$')
throw new IllegalArgumentException ("Invalid salt revision");
off = 4;
}
// Extract number of rounds
if (salt.charAt(off + 2) > '$')
throw new IllegalArgumentException ("Missing salt rounds");
rounds = Integer.parseInt(salt.substring(off, off + 2));
real_salt = salt.substring(off + 3, off + 25);
try {
passwordb = (password + (minor >= 'a' ? "\000" : "")).getBytes("UTF-8");
} catch (UnsupportedEncodingException uee) {
throw new AssertionError("UTF-8 is not supported");
}
saltb = decode_base64(real_salt, BCRYPT_SALT_LEN);
B = new BCrypt();
hashed = B.crypt_raw(passwordb, saltb, rounds,
(int[])bf_crypt_ciphertext.clone());
rs.append("$2");
if (minor >= 'a')
rs.append(minor);
rs.append("$");
if (rounds < 10)
rs.append("0");
if (rounds > 30) {
throw new IllegalArgumentException(
"rounds exceeds maximum (30)");
}
rs.append(Integer.toString(rounds));
rs.append("$");
rs.append(encode_base64(saltb, saltb.length));
rs.append(encode_base64(hashed,
bf_crypt_ciphertext.length * 4 - 1));
return rs.toString();
}
/**
* Generate a salt for use with the BCrypt.hashpw() method
* @param log_rounds the log2 of the number of rounds of
* hashing to apply - the work factor therefore increases as
* 2**log_rounds.
* @param random an instance of SecureRandom to use
* @return an encoded salt value
*/
public static String gensalt(int log_rounds, SecureRandom random) {
StringBuffer rs = new StringBuffer();
byte rnd[] = new byte[BCRYPT_SALT_LEN];
random.nextBytes(rnd);
rs.append("$2a$");
if (log_rounds < 10)
rs.append("0");
if (log_rounds > 30) {
throw new IllegalArgumentException(
"log_rounds exceeds maximum (30)");
}
rs.append(Integer.toString(log_rounds));
rs.append("$");
rs.append(encode_base64(rnd, rnd.length));
return rs.toString();
}
/**
* Generate a salt for use with the BCrypt.hashpw() method
* @param log_rounds the log2 of the number of rounds of
* hashing to apply - the work factor therefore increases as
* 2**log_rounds.
* @return an encoded salt value
*/
public static String gensalt(int log_rounds) {
return gensalt(log_rounds, new SecureRandom());
}
/**
* Generate a salt for use with the BCrypt.hashpw() method,
* selecting a reasonable default for the number of hashing
* rounds to apply
* @return an encoded salt value
*/
public static String gensalt() {
return gensalt(GENSALT_DEFAULT_LOG2_ROUNDS);
}
/**
* Check that a plaintext password matches a previously hashed
* one
* @param plaintext the plaintext password to verify
* @param hashed the previously-hashed password
* @return true if the passwords match, false otherwise
*/
public static boolean checkpw(String plaintext, String hashed) {
byte hashed_bytes[];
byte try_bytes[];
try {
String try_pw = hashpw(plaintext, hashed);
hashed_bytes = hashed.getBytes("UTF-8");
try_bytes = try_pw.getBytes("UTF-8");
} catch (UnsupportedEncodingException uee) {
return false;
}
if (hashed_bytes.length != try_bytes.length)
return false;
byte ret = 0;
for (int i = 0; i < try_bytes.length; i++)
ret |= hashed_bytes[i] ^ try_bytes[i];
return ret == 0;
}
}

View File

@@ -19,8 +19,6 @@ import org.junit.Test;
import java.util.Arrays;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
/**
* JUnit unit tests for BCrypt routines
@@ -28,168 +26,6 @@ import static org.junit.Assert.assertTrue;
* @version 0.2
*/
public class BCryptTest {
String[][] test_vectors = {
{ "",
"$2a$06$DCq7YPn5Rq63x1Lad4cll.",
"$2a$06$DCq7YPn5Rq63x1Lad4cll.TV4S6ytwfsfvkgY8jIucDrjc8deX1s." },
{ "",
"$2a$08$HqWuK6/Ng6sg9gQzbLrgb.",
"$2a$08$HqWuK6/Ng6sg9gQzbLrgb.Tl.ZHfXLhvt/SgVyWhQqgqcZ7ZuUtye" },
{ "",
"$2a$10$k1wbIrmNyFAPwPVPSVa/ze",
"$2a$10$k1wbIrmNyFAPwPVPSVa/zecw2BCEnBwVS2GbrmgzxFUOqW9dk4TCW" },
{ "",
"$2a$12$k42ZFHFWqBp3vWli.nIn8u",
"$2a$12$k42ZFHFWqBp3vWli.nIn8uYyIkbvYRvodzbfbK18SSsY.CsIQPlxO" },
{ "a",
"$2a$06$m0CrhHm10qJ3lXRY.5zDGO",
"$2a$06$m0CrhHm10qJ3lXRY.5zDGO3rS2KdeeWLuGmsfGlMfOxih58VYVfxe" },
{ "a",
"$2a$08$cfcvVd2aQ8CMvoMpP2EBfe",
"$2a$08$cfcvVd2aQ8CMvoMpP2EBfeodLEkkFJ9umNEfPD18.hUF62qqlC/V." },
{ "a",
"$2a$10$k87L/MF28Q673VKh8/cPi.",
"$2a$10$k87L/MF28Q673VKh8/cPi.SUl7MU/rWuSiIDDFayrKk/1tBsSQu4u" },
{ "a",
"$2a$12$8NJH3LsPrANStV6XtBakCe",
"$2a$12$8NJH3LsPrANStV6XtBakCez0cKHXVxmvxIlcz785vxAIZrihHZpeS" },
{ "abc",
"$2a$06$If6bvum7DFjUnE9p2uDeDu",
"$2a$06$If6bvum7DFjUnE9p2uDeDu0YHzrHM6tf.iqN8.yx.jNN1ILEf7h0i" },
{ "abc",
"$2a$08$Ro0CUfOqk6cXEKf3dyaM7O",
"$2a$08$Ro0CUfOqk6cXEKf3dyaM7OhSCvnwM9s4wIX9JeLapehKK5YdLxKcm" },
{ "abc",
"$2a$10$WvvTPHKwdBJ3uk0Z37EMR.",
"$2a$10$WvvTPHKwdBJ3uk0Z37EMR.hLA2W6N9AEBhEgrAOljy2Ae5MtaSIUi" },
{ "abc",
"$2a$12$EXRkfkdmXn2gzds2SSitu.",
"$2a$12$EXRkfkdmXn2gzds2SSitu.MW9.gAVqa9eLS1//RYtYCmB1eLHg.9q" },
{ "abcdefghijklmnopqrstuvwxyz",
"$2a$06$.rCVZVOThsIa97pEDOxvGu",
"$2a$06$.rCVZVOThsIa97pEDOxvGuRRgzG64bvtJ0938xuqzv18d3ZpQhstC" },
{ "abcdefghijklmnopqrstuvwxyz",
"$2a$08$aTsUwsyowQuzRrDqFflhge",
"$2a$08$aTsUwsyowQuzRrDqFflhgekJ8d9/7Z3GV3UcgvzQW3J5zMyrTvlz." },
{ "abcdefghijklmnopqrstuvwxyz",
"$2a$10$fVH8e28OQRj9tqiDXs1e1u",
"$2a$10$fVH8e28OQRj9tqiDXs1e1uxpsjN0c7II7YPKXua2NAKYvM6iQk7dq" },
{ "abcdefghijklmnopqrstuvwxyz",
"$2a$12$D4G5f18o7aMMfwasBL7Gpu",
"$2a$12$D4G5f18o7aMMfwasBL7GpuQWuP3pkrZrOAnqP.bmezbMng.QwJ/pG" },
{ "~!@#$%^&*() ~!@#$%^&*()PNBFRD",
"$2a$06$fPIsBO8qRqkjj273rfaOI.",
"$2a$06$fPIsBO8qRqkjj273rfaOI.HtSV9jLDpTbZn782DC6/t7qT67P6FfO" },
{ "~!@#$%^&*() ~!@#$%^&*()PNBFRD",
"$2a$08$Eq2r4G/76Wv39MzSX262hu",
"$2a$08$Eq2r4G/76Wv39MzSX262huzPz612MZiYHVUJe/OcOql2jo4.9UxTW" },
{ "~!@#$%^&*() ~!@#$%^&*()PNBFRD",
"$2a$10$LgfYWkbzEvQ4JakH7rOvHe",
"$2a$10$LgfYWkbzEvQ4JakH7rOvHe0y8pHKF9OaFgwUZ2q7W2FFZmZzJYlfS" },
{ "~!@#$%^&*() ~!@#$%^&*()PNBFRD",
"$2a$12$WApznUOJfkEGSmYRfnkrPO",
"$2a$12$WApznUOJfkEGSmYRfnkrPOr466oFDCaj4b6HY3EXGvfxm43seyhgC" },
};
/**
* Test method for 'BCrypt.hashpw(String, String)'
*/
@Test
public void testHashpw() {
System.out.print("BCrypt.hashpw(): ");
for (int i = 0; i < test_vectors.length; i++) {
String plain = test_vectors[i][0];
String salt = test_vectors[i][1];
String expected = test_vectors[i][2];
String hashed = BCrypt.hashpw(plain, salt);
assertEquals(hashed, expected);
System.out.print(".");
}
}
/**
* Test method for 'BCrypt.gensalt(int)'
*/
@Test
public void testGensaltInt() {
System.out.print("BCrypt.gensalt(log_rounds):");
for (int i = 4; i <= 12; i++) {
System.out.print(" " + i + ":");
for (int j = 0; j < test_vectors.length; j += 4) {
String plain = test_vectors[j][0];
String salt = BCrypt.gensalt(i);
String hashed1 = BCrypt.hashpw(plain, salt);
String hashed2 = BCrypt.hashpw(plain, hashed1);
assertEquals(hashed1, hashed2);
System.out.print(".");
}
}
}
/**
* Test method for 'BCrypt.gensalt()'
*/
@Test
public void testGensalt() {
System.out.print("BCrypt.gensalt(): ");
for (int i = 0; i < test_vectors.length; i += 4) {
String plain = test_vectors[i][0];
String salt = BCrypt.gensalt();
String hashed1 = BCrypt.hashpw(plain, salt);
String hashed2 = BCrypt.hashpw(plain, hashed1);
assertEquals(hashed1, hashed2);
System.out.print(".");
}
}
/**
* Test method for 'BCrypt.checkpw(String, String)'
* expecting success
*/
@Test
public void testCheckpw_success() {
System.out.print("BCrypt.checkpw w/ good passwords: ");
for (int i = 0; i < test_vectors.length; i++) {
String plain = test_vectors[i][0];
String expected = test_vectors[i][2];
assertTrue(BCrypt.checkpw(plain, expected));
System.out.print(".");
}
}
/**
* Test method for 'BCrypt.checkpw(String, String)'
* expecting failure
*/
@Test
public void testCheckpw_failure() {
System.out.print("BCrypt.checkpw w/ bad passwords: ");
for (int i = 0; i < test_vectors.length; i++) {
int broken_index = (i + 4) % test_vectors.length;
String plain = test_vectors[i][0];
String expected = test_vectors[broken_index][2];
assertFalse(BCrypt.checkpw(plain, expected));
System.out.print(".");
}
}
/**
* Test for correct hashing of non-US-ASCII passwords
*/
@Test
public void testInternationalChars() {
System.out.print("BCrypt.hashpw w/ international chars: ");
String pw1 = "\u2605\u2605\u2605\u2605\u2605\u2605\u2605\u2605";
String pw2 = "????????";
String h1 = BCrypt.hashpw(pw1, BCrypt.gensalt());
assertFalse(BCrypt.checkpw(pw2, h1));
System.out.print(".");
String h2 = BCrypt.hashpw(pw2, BCrypt.gensalt());
assertFalse(BCrypt.checkpw(pw1, h2));
System.out.print(".");
}
private static class BCryptHashTV {
private final byte[] pass;